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LETTERS TO THE EDITORS 

COMMENTS ON ACTIVATION OF NUCLEATION CAVITIES 

ON A HEATING SURFACE WITH TEMPERATURE 

GRADIENT IN STEWARD LIQUID 

(Received 24 March 1969 and in revisedform 19 September 1969) 

MADEJSKI [l] has presented an interesting analysis on the 
activation of nucleation cavities in the presence of a non- 
uniform temperature field. In contrast to previous treatments 
of the subject, e.g. Hsu [2], whose analysis apparently 
provided the motivation for Madejski’s work, the active 
bubble nucleus is allowed to take the shape of a flattened 
spheroid. It is shown that the active bubble nucleus is 
spherical only for the case of uniform superheat and that if 
a temperature gradient exists in the surrounding liquid, the 
shape of the bubble nucleus is flattened. As a consequence, 
the superheat required for activation is greater than in the 
case of uniform superheat. As with Hsu’s analysis, the 
solution is given in terms of a thermal layer thickness, 
however, as the thermal layer thickness approaches infinity, 
Madejski’s expression does reduce to the uniform superheat 
expression as would be required. Unfortunately, accurate 
data involving known cavity radii, thermal layer thickness 
and wall superheat are not yet available in the pubiished 
literature to test the analysis. 

Since such data will probably be available in the near 
future, it seems advisable to point out an error in the analysis. 
The notation and equation numbers which follow are those 
used by Madejski. 

The definition for k in equation (27) of Madejski’s paper 
is incorrect and does not yield either equation (28) or (30). 
In order to find the correct expression, it is convenient to 
redefine the variable t in the following manner 
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Thus using the same procedure as suggested by Madejski, 
equation (25) becomes 
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y=-2 s (1 - t2)dt 
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Using the substitution 
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t = J2 sin JI (26) 
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and introducing the quantity 

-f 
(27) 

as suggested by the scheme presented in [3], equation (25) 
is reduced to the form of elliptic integrals of the first and 
second kind, defined by 
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thus we obtain 
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It is important to note that the form of equation (30) remains 
unchanged; only the multiplying factor differing from the 
original analysis. 

Proceeding further, substituting equation (27) into 

(31) 

Madejski’s equation (22) 
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from which 
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and thus as indicated by Madejski, k = 0 yields b = 0, and 
k = 1 yields b = 6. Thus 

O<kkl. 

Substituting equation (27) into equation (30), an expression 
is obtained for the dimensionless temperature gradient as a 
function of the parameter k. 

This corrected relationship is shown in Fig. 1 as the solid line. 
Using Madeje_.i’s equation (14) along with equation (27), 
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FIG. 1. Variation of dimensionless temperature gradient 
with parameter k. 

(32) and (33) one obtains an expression for the ratio of the 
superheat required for,activation in non-uniform temperature 
field to that required in a uniforin field. 
p’ - p” R,P:AT AT 

PI 20 =i16, 

As the dimensionless temperature gradient (R&5) approaches 
zro, i.e. uniform superheat, AT/AT, approaches unity. 

As R,/6 becomes large, we have the asymptotic solution 

AT ?R 

Combining equations (31) and (33), an expression is 
obtained for the ratio of the height of the bubble nucleus to 
the cavity radius 

b {l - ,/[2(1 - k2)/(2 - k2)]1 _ = __-______-_ 
RC R,/6 

the corrected expressions for AT/AT,, and b/R, are shown as 
the solid lines on Fig. 2. 

FIG. 2. Superheat and bubble geometry ratios as a function 
of dimensionless temperature gradient. 
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FURTHER REMARKS ON A MODEL OF TWO-DIMENSIONAL CONVECTION 

(Received 3 September 1969) 

IN MY recent article [l] I demonstrated that a certain model 
of steady two-dimensional convection at high Rayleigh 
number fails to describe either the motion of a fluid with 
infinite Prandtl number or the motion of a fluid in a porous 
medium. G. Roberts of the University of Newcastle-upon- 
Tyne has pointed out to me that there is an unstated assump- 
tion in that model, that the temperature is of unit order-of- 
magnitude in the vertical boundary layers. If {his assump- 
tion is replaced by a fifth model balance that (u. V)6 _ 8% in 
that region, allowing [0] to be less than unity in order of 
magnitude, self-consistent models may be constructed. 

The balances in the infinite Prandtl number fluid (obtained 
by G. 0. Roberts [27]) are Cuti] = Ra3’5, 6, = Ra-1/5, 
6. = Rae3/“‘, [01 = RaV1”O, Nu _ Ra’15 (where Tel is 
the order of m&&t& of the temperature in the v&k.al 
layers), and for motion in a porous medium [u&j = A2/5, 
,&, = A115, 6, = A-2/5, [e] = A-‘j5, Nu w A’15. 

Ra-‘/4&5/‘2 6 _ v _ Ra-1~4Pr-1~‘2, [o] = Pr-1/6, Nu _ 

Ra’/4Pr- ‘/“‘for the Pillow model. The conclusion that the 
viscous boundary layer eventually tills the cell remains valid; 
it is however now seen that the temperature in the vertical 
boundary layers decreases in order of magnitude as the 
Pradntl number increases. The ftite Prandtl number model 
is valid for Pr 4 Ra3/5 for both models. 

J. L. ROBINSON 

University of Rhode Island 
Kingston 
Rhode Island, U.S.A. 

The balances for motion of a viscous fluid with large 
Prandtl number become Cuti] = Ra2/3Pr-‘/g, 6, = 

1, 

Ra-1’3Pr2/g, 6, = Ra-‘/3Pr5/g, 6, = Ra-1’3Pr”‘8, [e] = 

PrT1j6, Nu w Ra’/3Pr-z’9 for the Robinson model and 2. 
Cuti] = Ra1/2Pr-“6, 6, = Ra-1’4Pr1’12, bB = 
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